

WG3 - Robustness of systems

John Dalsgaard Sørensen Aalborg University, Aalborg, Denmark

WG3 – MoU: planned activities

Activities planned in WG3:

- Characterisation of multi-scale variability in timber structures.
- Analysis of system effects for several types of timber structures.
- Qualification of robustness as a characteristic of timber structures.
- Establishing
 - Framework for reliability based design and assessment of timber structural systems based on these considerations.
 - Guideline on 'Recommendations for practical design for robustness of timber structures'

WG3 – focus points

- **1. Reliability of timber systems:**
- Roof trusses / Roof elements / Glued laminated beams / solid timber structures / ...
- Spatial dependence for material strength parameters / 'foreseen' loads / <u>'unforeseen' incidents & human errors</u>
- Reliability of systems / risk assessment

WG3 – focus points

2. Robustness of timber structures:

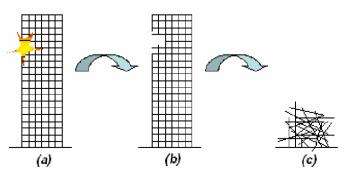
- Characterisation of timber structures with respect to robustness
- Reliability / risk based requirements related to consequences of direct failure consequences and follow-up consequences
- Consensus on the characteristics of timber systems regarding redundancy and robustness
- Development of simplified approaches for assessment of robustness, suitable for day-to-day engineering purposes how to increase robustness of timber structures?

WG3 working items

- Review collapses with respect to robustness
 - Ballerup arena
 - Bad Reichenhall Ice-arena
 - German and Scandinavian investigations of structural failures WG1 link
- Benchmark examples
 - Norwegian sports hall
 - Austrian bridge
 - Traditional Portuguese truss
 - Solid timber building
 - 300 years old church in Krauchtal, Switzerland
- Papers: conferences and journals + reports
- Guideline: Recommendations for practical design for robustness of timber structures'
- JCSS PMC: update of Timber Probabilistic Model Code
 - System aspects
 - Robustness

Robustness aspects

- Exposures:
 - 'Normal' loads
 - Errors in design, execution and operation
 - Unforeseable incidents


Correlated / uncorrelated for different elements?

- Redundancy (series / parallel system):
- Ductility
- Conventional / unconventional structure
- Consequence of failure
- Seismic areas earthquake design requirement

covered by:

- partial safety factors etc.
- quality control? / Robustness?
- robustness

good or bad? always good?

WG3 – Trondheim March 2009

Presentations:

- Philipp Dietsch: Secondary Structures Purlins Robustness Considerations
- Jørgen Munch-Andersen: Robustness versus Human Errors
- Jørgen Munch-Andersen: Robustness of column slab system
- Jorge & Luis: Potugese timber structures robustness issues
- Jelena Srpcic: Damage on timber roof structures caused by storms in January 2008
- Poul Henning Kirkegaard: Robustness Assessment of Timber Structures with Ductile Behaviour
- Dean Cizmar: Robustness of timber structures case study: Norwign sports hall

WG3 - Trondheim March 2009

Documents:

- Philipp Dietsch: The Bad Reichenhall Ice-Arena Collapse
- Philipp Dietsch: Secondary Structures Purlins Robustness Considerations
- Jørgen Munch-Andersen: Robustness versus Human Errors
- Jørgen Munch-Andersen: The Siemens Arena collapse in a robustness perspective
- Dean Cizmar: : Robustness of timber structures case study: Norwign sports hall
- Guideline for Design for Robustness of Timber Structures
 - Jorge Branco: Current requirements in buildings regulations and codes EN 1998-1
 - Luis Neves: Current requirements in buildings regulations and codes ASCE 7-05

AALBORG UNIVERSITY

WG3 - Guideline

1		Introduction	6		
2		Definition of structural robustness	7		
	2.1	Robustness measures	9		
	2.2	Robustness in building codes	13		
3		Quantification of robustness and methods of assessing robustness of timber structures	15		
	3.1	Robustness evaluation of failed timber structures			
	3.2	Robustness of timber structures assuming a ductile behaviour of material and joints	17		
	3.3	Redundancy vs. Robustness	18		
	3.4	System modelling of timber structures	18		
	3.5	Conclusion	18		
4		Methods of designing for robustness of timber structures	19		
5		Effect of quality control	19		
6		Recommendations			
Annex A. Current requirements in building regulations and codes					
Annex A1. Eurocodes: EN1990 and EN1991-1-7					
	Annex A2. Eurocodes: EN1998: Design of structures for earthquake resistance				
	Annex A3. Denmark – Robustness requirements in national annex to EN1990				
	Annex A4. Offshore – Robustness requirement in ISO 19902				
	Annex A5. JCSS – Robustness requirement in PMC				
	Annex A6. ASCE – Robustness requirements				
	Annex B1. Case study: Ballerup Arena, Denmark				
	Am	nex B2. Case study: Bad Reichenhall, Germany	41		
7		References	43		

AALBORG UNIVERSITY

WG3 - Guideline

2	D	Definition of structural robustness	7
	2.1	Robustness measures	9
	2.1.1	Risk analysis	9
	2.1.2	Risk-based robustness index	10
	2.1.3	Reliability-based robustness index	11
	2.1.4	Deterministic robustness index	
	2.2	Robustness in building codes	13
	2.2.1	Eurocodes	13
	2.2.2	JCSS – Probabilistic Model Code	14
	2.2.3	Danish robustness requirements	14

WG3 - Guideline

3	Q	Quantification of robustness and methods of assessing robustness of timber structures	15	JMA
	3.1	Robustness evaluation of failed timber structures	15	
	3.1.1	Evaluation of wide span timber structures	16	
	3.1.2	Evaluation of timber structures	16	
	3.1.3	Secondary Structures - purlins - robustness considerations	16	
	3.1.4	Assessment of timber structures	16	
	3.1.5	Conclusion	16	
	3.2	Robustness of timber structures assuming a ductile behaviour of material and joints	17	PHK DC
	3.2.1	Ductile/Brittle behaviour material	17	
	3.2.2	Ductile/Brittle behaviour of connections/joints	17	
	3.2.3	Conclusion		
	3.3	Redundancy vs. Robustness	18	PHK JDS
	3.4	System modelling of timber structures	18	
	3.5	Conclusion		
	5	Effect of quality control		Dietsch Luis

AALBORG UNIVERSITY

WG3

- Continue Benchmark examples
 - Norwegian sports hall
 - Austrian bridge
 - Traditional Portuguese truss
 - Solid timber building
 - 300 years old church in Krauchtal

DC and PHK PHK & Portuguese group Portuguese group PHK DC

- Guideline: Recommendations for practical design for robustness of timber structures
 - Task group meeting before Ljubljana meeting
 - Updated drafts of selected chapters: end of August 2009
 - Next meeting:
 - Discuss draft chapters
 - Distribute tasks to update chapters and write new final draft chapters
 - Updating of JCSS PMC
- Conference papers